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Introduction

Achieving a high level of environmental protection 
against the adverse effects of chemicals requires an 
effective chemical regulatory policy. Approximately 
100,000 different chemical substances are registered 
in the European Union (EU), of which about 30,000 are 
manufactured or imported in quantities greater than one 
metric ton per year1. While experimental physicochemi-
cal properties and toxicity data are available for “new 
chemicals” (developed since 1981), there are no such 
provisions for “existing chemicals” (developed before 
1981), even though they make up almost 99% of the total 
volume in the EU market. Therefore, adequate toxico-
logical and ecotoxicological data are available only for a 
very small proportion of chemicals. To address this lack 
of health and safety data, the European Union recently 
adopted a new regulation, called REACH2,3 (Registration, 
Evaluation, Authorization and Restriction of Chemicals). 
In REACH, all compounds manufactured or imported 
into the EU in quantities greater than one metric ton per 

year are required to be registered in a central database. 
Registration includes providing information concern-
ing the effects of the chemical on human health and 
the environment. Under REACH, the requirements in 
terms of aquatic toxicity call for data from short-term 
toxicity testing on invertebrates and growth inhibition 
studies on aquatic plants. In addition, short-term toxicity 
data on fish are required for chemicals manufactured/
imported in quantities greater than 10 metric tons per 
year. Traditionally, such information has been obtained 
through in vivo animal testing; however, under REACH 
legislation, quantitative structure–activity relationship 
(QSAR) models and in vitro methods as alternatives to 
animal experiments are expected to play a significant 
role. (Q)SARs will be used more extensively, in the inter-
ests of time- and cost-effectiveness and animal welfare. 
In particular, (Q)SARs are likely to play an important role 
in the assessment of chemicals produced or imported 
in quantities between 1 and 10 metric tons per year, for 
which minimal animal testing is foreseen3,4. In aquatic 
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Abstract
Three quantitative structure–activity relationship (QSAR) models were evaluated for their power to predict the 
toxicity of chemicals in two datasets: (1) EPAFHM (US Environmental Protection Agency—Fathead Minnow) and 
(2) derivatives having a high production volume (HPV), as compiled by the European Chemical Bureau. For all 
three QSAR models, the quality of the predictions was found to be highly dependent on the mode of action of 
the chemicals. An analysis of outliers from the three models gives some clues for improving the QSAR models. 
Two classification methods, Toxtree and a Bayesian approach with fingerprints as descriptors, were also ana-
lyzed. Predictions following the Toxtree classification for narcosis were good, especially for the HPV set. The 
learning model (Bayesian approach) produced interesting results for the EPAFHM dataset but gave lower quality 
predictions for the HPV set.
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ecotoxicology, QSARs allow, for example, an estimation of 
toxic concentrations based on physical and/or chemical 
properties, without the use of experiments.

A number of conditions still need to be met in order 
that (Q)SAR results can provide an acceptable alternative 
to experimental data. These are: (1) a defined endpoint; 
(2) an unambiguous algorithm; (3) a defined domain of 
applicability; (4) appropriate measures of goodness-of-
fit, robustness, and predictivity; and (5) a mechanistic 
interpretation, if possible5. No single QSAR model yet 
fulfills all of these criteria, and incorrect selection of a 
QSAR model can result in 10- to 1000-fold errors in toxic 
potency estimates6. Therefore, a key factor in the use of 
QSARs for predicting chemical toxicity is the choice of 
QSAR model.

Traditionally, the selection of structural analogs or 
QSARs has been based on the assumption that com-
pounds from the same ‘chemical class’ should behave in 
a toxicologically similar manner. However, identification 
of chemical classes could be problematic because chem-
icals often carry different chemical moieties, thereby 
confounding efforts to achieve a meaningful classifica-
tion. Moreover, within the QSAR programs themselves, 
new chemicals are per definition not included in the 
training set, so it is difficult to assign a good QSAR model 
to such chemicals. As a result, another approach con-
sists of defining a general model based on a maximum 
number of chemicals and/or focusing on the notion of 
mode of toxic action7,8. Various modes of toxic action for 
chemicals in fish have been identified and extended to 
other aquatic organisms. Currently, the Verharr scheme 
seems to be the most widely used, recognizing modes of 
action associated with different structural classes: class 
1—inert chemicals associated with non polar narcosis; 
class 2—relatively inert chemicals associated with polar 
narcosis; class 3—reactive chemicals associated with 
enhanced toxicity; and class 4—active chemicals associ-
ated with a central nervous system effect7. In the context 
of acute toxicity to fish, three groups of QSAR models 
have been reported in the literature: models for narcoses, 
global QSARs (developed without respect to chemical 
class and mode of action (MOA)), and QSARs for specific 
chemical classes.

Considering the volume of measurements to be under-
taken, the lack of experience with implementation of such 
QSAR test policies, and the need for making informed 
choices about the multiple available QSAR models (which 
should eventually be available to all stakeholders in the 
REACH process), it is necessary to evaluate the accuracy 
of prediction of various models when they are used as a 
“black box,” without clear guidance on when to use which 
QSAR. The present article compares the predictive qual-
ity of three QSAR models applied to a database of 617 
compounds, the Environmental Protection Agency (EPA) 
Fathead Minnow Acute Toxicity database. This data-
base was generated by the US Environmental Protection 
Agency with the goal of developing an expert system to 

predict acute toxicity from chemical structure based on 
a chemical’s MOA. The 617 industrial chemicals were 
expressly chosen to serve as a useful training set for the 
development of predictive QSARs. The three QSAR mod-
els investigated here are: (1) a model developed in our 
laboratory, referred to as CERMN9; (2) the TOPKAT expert 
system10; and (3) a model developed by the European 
Chemicals Bureau (ECB)11.

Materials and methods

Data set
A set of 617 chemicals was extracted from the EPA site12. The 
record for each chemical contains its name, mode of action 
(MOA)6, molecular weight (MW), hydrophobicity (logP

OW
), 

and biological data corresponding to 96-h LC
50

 bioassays 
for the fathead minnow (Pimephales promelas). Chemicals 
without logP

OW
 and/or LC

50
 values were discarded, leading 

to a set of 566 chemical derivatives. Hereafter, we refer to 
this set as the EPAFHM set. This dataset was the basis for 
the Bayesian categorizations (see “Learning molecular 
categories” below).

A second set was created with ECB-high production 
volume (HPV)11 chemicals. This set was used as a test set 
after the classification as baseline narcosis (Bayesian cat-
egorizations). In total, 1749 substances from over 2782 
structures described in the ECB-HPV dataset were down-
loaded from the ECB site. Of these 1749 derivatives, 225 
derivatives had 96-h LC

50
 value(s) for the fathead minnow 

recorded and were considered in this study (the lowest 
LC

50
 value was taken if several values were given for one 

derivative).

QSAR models
For the prediction of the biological response (96-h LC

50
 

(mol/L)) toward the fathead minnow, four QSAR models 
were first tested.

TOPKAT10 is a QSAR-based system which generates 
assessments of chemical toxicity solely from a chemical’s 
molecular structure. TOPKAT uses cross-validated models 
based on experimental data.

The ECB model13 is a model (Equation (1)) associated 
with narcosis as the MOA based on one hydrophobic 
descriptor (logP

OW
):

logLC 0.81logP50 OW= − −1.74 � (1)

In addition to the ECB model, Netzeva et  al.14 published 
a general model (regardless of MOA) for toxicity in the 
fathead minnow (Equation (2)) using the same previous 
descriptor but with a lower intercept value (higher basic 
toxicity) and a slight decrease of the slope relative to 
logP

OW
:

logLC 0.70logP50 OW= − − 2.28 � (2)

Our QSAR model9, referred to below as CERMN, is also a 
general model (Equation (3)), incorporating logP

OW
 and 
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two other descriptors corresponding to steric (MW) and 
electronic descriptors (E

LUMO
):

logLC50 0.509logPOW 0.0045MW 0.067ELUMO 1.98= − − + −
� (3)

Calculation of descriptors and regressions
Hydrophobicity or octanol–water partition coefficient 
(logPOW)
In EPAFHM, the values of logP

OW
 correspond to experi-

mental values or to calculated (ClogP15) values when 
experimental ones are missing. For the testing set, 
logP

OW
 values were calculated by KOWWIN16. This lat-

ter software gave either experimental logP
OW

 values if 
they were recorded in KOWWIN’s internal database or 
estimated values in other cases. For EPAFHM, the cor-
relation between ClogP and KOWWIN values was very 
good (r2 = 0.96).

Quantum descriptors
LUMO (lowest unoccupied molecular orbital energy) values 
were calculated for each chemical with Pipeline Pilot17 using 
VAMP, a semi-empirical molecular orbital package, and 
AM1 for Hamiltonian.

Pipeline Pilot fingerprints (ECFP_12)
Extended Chemical Fingerprint 12, called ECFP_12, is a 
class of circular substructural fingerprint18. The ECFP_12 
fingerprint encodes each atom and its molecular environ-
ment within a circle with a maximal diameter of 12 chemical 
bonds. The fingerprint was recorded into a fixed length of 
1024 bits.

Regression methods
All the regressions were done in Microsoft Excel. The 
correlation coefficient r2 represents the quality of the 
regression between two variables (how much the variance 
of one variable is accounted for by the predictive power of 
the other variables). The standard deviation s character-
izes the width of the distribution of the predicted values 
by the regression. The greater is the standard deviation, 
the more widely distributed are the values and the worse 
is the predictive power. The limit for outliers was defined 
from the s value (data normally distributed). The n values 
correspond to the number of chemicals used to calculate 
the correlation.

Classification tools
Toxtree19

Toxtree is an open-source application that places chemi-
cals into categories and predicts various kinds of toxic 
effects by applying decision tree approaches. Verhaar’s 
scheme7, for aquatic MOAs, classifies chemicals into five 
classes: (1) narcosis or baseline toxicity; (2) less inert 
compounds; (3) nonspecific reactivity; (4) compounds 
acting by a specific mechanism; and (5) unclassified 
compounds.

Learning molecular categories17

This protocol was built using multiple Bayesian 
categorization equations within a single model, using 
a property that lists the categories. The EPAFHM set is 
divided into nine clear MOAs (see Table 1). For each 
MOA, the confidence degree toward this classification is 
expressed from “High” to “Low.” Compounds for which 
the MOA confidence had “High” and “High-Moderate” 
probabilities for each MOA were used as the training set. 
AlogP, molecular weight, the number of H donors and 
acceptors, the number of rotatable bonds, the molecular 
polar surface area, and ECFP_12 fingerprint were used 
for descriptors17.

Results and discussion

Choice of ECB model
Two different QSARs with logP

OW
 as the single descrip-

tor could be used in principle (Equation (1) for narcosis 
and Equation (2) for a general model). The logLC

50
 values 

predicted by the two methods are completely correlated. 
However, as expected, the toxicity values predicted by the 
general model (Equation (2)) are in most cases higher than 
those predicted by Equation (1), although the observed dif-
ferences are smaller than the level of accuracy. Therefore, 
we arbitrarily chose the narcosis model (Equation (1)) for 
the following studies.

Table 1.  Classification of EPAFHM derivatives based on mode of action 
(MOA). Compounds with “High” or “High-Moderate” probabilities for 
each MOA were used as the training set for defining the categories.

MOA Initial set Training set

Classification 
of the 

remaining set

Baseline narcosis 241 142 99

Arylate and ester narcosis 26 11 15

Polar narcosis 38 29 9

Electrophile or 
proelectrophile reactivity

97 44 53

Acetylcholinesterase 
inhibition

17 17 0

Central nervous system 
seizure or stimulant

9 9 0

Neurodepressant 6 6 0

Respiratory blocker or 
inhibitor

4 2 2

Uncoupler of oxidative 
phosphorylation

12 11 1

MOA not determined 116 0 116

Table 2.  Statistical results for the studies.

 TOPKAT ECB CERMN

r2 =  0.64 0.61 0.65

s =  0.81 0.86 0.81

n =  492 566 566
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Quality of the predictions
The statistical results for the three studies are presented 
in Table 2. The ECB model is slightly inferior to the 
TOPKAT and CERMN models. However, TOPKAT  

(Figure 1) could predict only 492 chemicals out of 566 
derivatives (EPAFHM). Also, the graphical representations 
of the relationships between the real and predicted values 
show some discrepancies between the models. Moreover, 
we note that the compounds excluded by TOPKAT are gen-
erally well predicted by the two other models (black full 
circles, Figures 2 and 3).

Outliers
Several compounds with high under- and overestimated 
values appeared (outliers). We selected a cutoff (dashed 
line) at 2.56s (see Table 2 for s values) to point out these 
outliers. For the ECB and CERMN models, only one 
derivative was overestimated for its toxicity (Figures 2 
and 3); in contrast, TOPKAT (Figure 1) overestimated 
five derivatives. Concerning the underestimated outliers, 
TOPKAT generated the fewest outliers with eight deriva-
tives; CERMN generated 12 outliers and ECB 15. Three of 
the underestimated outliers (4, 6, and 7) are common to 
all models (Table 3). Eleven of the underestimated outliers 
are common (Table 3) to the CERMN and ECB models.

Outliers with overestimated values.  LogP
OW

 is the 
main descriptor in the CERMN and ECB models. An 
incorrect prediction of logP

OW
 could be one explanation 

for the observed overestimates. This could be the case 
for 22. Indeed, this compound has a calculated value 
(ClogP) of 2.46 in EPAFHM but with KOWWIN the pre-
diction is–4.15. The experimentally determined logLC

50
 

value for 22 is–0.45 (logLC
50

 in mol/L). Starting from the 
KOWWIN prediction, the predicted LC

50
 value would 

be 1.62 for ECB (–3.73 initially with ClogP) and–0.51 for 
CERMN (–3.88 with ClogP). Thus, the prediction of the 
CERMN model is very good for this derivative using the 
KOWWIN calculation for logP

OW
. Experimental determi-

nation of logP
OW

 should be done to clarify this point. At 
this stage, we presume that the KOWWIN value is closer 
to the real logP

OW
 value for 22. The other overestimated 

values generated by TOPKAT correspond to nitriles (9, 
11, and 12). TOPKAT must consider these derivatives to 
be very toxic, presumably as a result of release of the cya-
nide group (we note that 18 and 19 are not outliers for 
TOPKAT). However, in our opinion, without activation 
of one proton of the alpha carbon of the nitrile group, 
the formation of cyanide is less probable (see below for 
a discussion on this point). For the two other derivatives 
(10, 13) we have no explanation. TOPKAT could estimate 
a toxicity based on the action of amine oxidase on 10 as 
described for some derivatives20. The toxicity assigned to 
13 is more surprising in light of the interest of propargyl 
amine in neuroprotection, for instance21.

Outliers with underestimated values.  Several of the 
outliers correspond to electrophile or proelectrophile reac-
tants. Among them, aldehydes such as 14 (acrolein) are sys-
tematic outliers in several QSAR studies. The toxic potency 
of acrolein, mediated by a Michael addition toward nucle-
ophiles, is very high and often underestimated. Compounds 
4, 6, 7, 15, and 16 are also outliers, and their mechanism 
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Figure 2.  Predicted logLC
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represent the chemicals not predicted with TOPKAT.
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Table 3.  Descriptions of the outliers produced by the models.

Structure N° (CAS number) Structure N° (CAS number)
H

H

H

H

H

H
H

H

H
H

HHH
H

H

H
H H

H HH

O

O P S

S

S

1(13071-79-9) 
– (TOPKAT) 

Bio:–7.34 O

HH

H

H

14(107-02-8) 
– (ECB) 

– (CERMN) 
Bio:–6.52

H
H

H

H

H
H

H
H

H

H

H

Cl

O

O

O

O

2 (14064-10-9) 
– (TOPKAT) 

Bio:–5.31 O

H
H

H

H H

H

15 (107-18-6) 
– (ECB) 

– (CERMN) 
Bio:–5.26

O

H

H

H

H H H

H
H

H

H

3 (1745-81-9) 
– (TOPKAT) 

Bio:–3.95

OH

H H
H

16 (107-19-7) 
– (ECB) 

– (CERMN) 
Bio:–4.58

H

H

H
H

H

H

Cl Cl

4 (1871-57-4) 
– (TOPKAT) 

– (ECB) 
– (CERMN) 

Bio:–5.82

H

H

H

HH

H

H

H

N N

17 (57-14-7) 
– (ECB) 

– (CERMN) 
Bio:–3.88

H

H

H

H

Cl

H

H

H

H
H

5 (30030-25-2) 
– (TOPKAT) 

Bio:–5.7
N

Cl

H

H

18 (107-14-2) 
– (CERMN) 

Bio:–4.75

Cl Cl

HH

H

H
6 (542-75-6) 
– (TOPKAT) 

– (ECB) 
– (CERMN) 

Bio:–5.67

N N

H
H

19 (109-77-3) 
– (ECB) 

– (CERMN) 
Bio:–5.07

O

O

H

H

H

H

H

H

H

H

7 (58-27-5) 
– (TOPKAT) 

– (ECB) 
– (CERMN) 

Bio:–6.19

NH
H

HF

F
H H

HH
H
H H H

H
H

H H
O

O

O
O

H
H HH

H
H

H
H

20 (70124-77-5) 
– (ECB) 

– (CERMN) 
Bio:–9.38

Table 3. continued on next page.
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of toxicity could be similar to that of , unsaturated alde-
hyde. Indeed, the metabolites of 16 have been studied22, 
and they result from oxidation of the alcohol leading to 
aldehyde and carboxylic acid. Thus, the metabolites of 16 

should have the same chemical properties as acrolein. The 
alcohol function of 15 could be oxidized leading straight to 
acrolein. The metabolites of 6 (1,3-dichloropropene) were 
described by the US EPA23. The formation of an alcohol 

Structure N° (CAS number) Structure N° (CAS number)
H

H
H

H

H

H
H

H

Cl

Cl
8 (623-25-6) 
– (TOPKAT) 
– (CERMN) 

Bio:–6.65

N+N+

H

H

O––O

O

ClCl

O

21 (3698-83-7) 
– (ECB) 

– (CERMN) 
Bio:–6.72

H

HH
N

H

H

9 (109-75-1) 
+ (TOPKAT) 

Bio:–2.57

N

N
N

N

22 (100-97-0) 
+ (ECB) 

+ (CERMN) 
Bio:–0.45

N N

H H
H

H

HH
H

H

H
H

10 (109-76-2) 
+ (TOPKAT) 

Bio:–1.79 N

O

O N
H

H
H

H
H

H

HH
H

H

H
H

H

H

S

23 (116-06-3) 
– (ECB) 

Bio:–5.34

N

NH H

H H H

H
H H

HHH

H
11 (629-40-3) 
+ (TOPKAT) 

Bio:–2.41

N N

N

O

O

O

HH
H

H
HH

HH
H

H

H
H

H

S

24 (23135-22-0) 
– (ECB) 

Bio:–4.51

N

N
H H

H H
HH

H H
12 (111-69-3) 
+ (TOPKAT) 

Bio:–1.75
N

N

OO

H

H

H

H

H

H

HHHH

H

H
H

H
HH

H

H
H

H

H

H

25 (60-41-3) 
– (ECB) 

Bio:–5.95

N

H

H

HH

H
H

H

HH

13 (6921-29-5) 
+ (TOPKAT) 

Bio:–2.65

O O

O

O

O

O

H

H
H

HH
H

H

H

H
H

H

H
H

H

H

H
H

H

HHH

H
26 (83-79-4) 

– (ECB) 
Bio:–7.88

  

O
OO

N

N S
S

P

N

H

H

H

H H
H

H H
H

H
H

H

27 (86-50-0) 
– (ECB) 

Bio:–6.69

Note. Minus symbol (–), underestimated compounds; plus symbol (+), overestimated compounds; Bio, real biological data (logLC
50

 in mol/L).

Table 3. Continued.
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followed by oxidation led to 3-chloroacrolein. We can sup-
pose that compound 4 has the same type of metabolites, 
with easy substitution of one chlorine atom by a hydroxyl 
group followed by oxidation. Compound 7 has the chemi-
cal features of an , unsaturated aldehyde. Compound 8 
could lead to 1,4-dibenzaldehyde. We have no information 
about whether the toxicity of this last derivative is related 
to , unsaturated aldehyde, with an activation of the 
phenyl group by the two electron-withdrawing groups. 
However, the graphic representation of the relation-
ships between these derivatives and logP

OW
 shows a good 

statistical relationship if we discard acrolein (because of its 
underestimated toxicity):

logLC 0.49logP 5.04

n 6 r 0.91 s 0.23

50 OW

2

= − −

= , = , = �
(4)

We observed that four other derivatives (see Table 4) are 
close to the cutoff value. With these derivatives, the following 
equation was obtained:

logLC 0.61logP 4.66

n 10 r 0.88 s 0.36

50 OW

2

= − −

= , = , = �
(5)

With this class of derivatives, we have a uniformly high toxic-
ity (value of intercept) and the toxicity increases with their 
ADME (adsorption, distribution, metabolism, excretion) 
properties (logP

OW
 and metabolism).

As for the other outliers, 17, a hydrazine derivative, is 
described as being very reactive24, although the mecha-
nism of its toxicity is not actually known. For halonitrile, 
18, and dicyanomethane, 19, their high toxicities should 
derive from the oxidation of a CH bond (activation with 
chlorine or nitrile group) followed by the release of HCN25, 
a potent inhibitor of cytochrome c oxidase. For 21, the rapid 
formation of phenol must be the first step (substitution of 
the chlorines by hydroxyl groups). Oxidation of one of the 
two phenol groups could lead to a very reactive derivative. 
The toxicities of nitrobenzene are also higher than either 
the baseline or polar narcosis MOA would suggest26. These 
two factors could explain the toxicity of 21. Compounds 
23, 24, 27, and 1 correspond to acetyl cholinesterase 

inhibitors. Therefore, their predicted toxicities could be 
improved by considering a QSAR model specific for this 
class of derivatives. Compounds 20, 25, and 26 are flucyth-
rinate, strychnine, and rotenone, respectively, well-known 
poisons used as pesticides. Their MOAs are very specific 
and their toxicities cannot be reliably estimated by QSAR 
models such as ECB or CERMN. An expert system such as 
TOPKAT, with a specific database, is more powerful. The 
toxicity of 5 was correctly predicted starting from Equation 
(5). We have no clear explanation for the mechanism of 
toxicity of diethyl chloromalonate, 2. For 2-allyl phenol, 3, 
used as a fungicide27, its action was reported to be medi-
ated by glutathione S-transferase interactions (GSTP1, 
GSTM1, GSTA1)28.

Quality of the prediction in relation to mode of action
The derivatives from the EPAFHM dataset were classified 
into nine MOAs (Table 1). For this part of the study we 
focused on the following MOAs: baseline narcosis; arylate/
ester narcosis; polar narcosis; electrophile or proelec-
trophile reactivity (reactants). Arylate/ester narcosis and 
polar narcosis MOAs were combined into a single group 
called “multiple narcosis.” The statistical results from the 
same predictive models (TOPKAT, ECB, and CERMN) are 
summarized in Table 5. The results of the TOPKAT model 
for baseline narcosis in relation to overestimation (see 
Figure 4) of the toxicity are described above for three deriv-
atives (11, 12, and 13). The CERMN model produced a very 
good correlation; however, we observed a slight overesti-
mation of toxicity of the compounds (Figure 5). The quality 
of the correlation decreased in all three models for the 
MOAs multiple narcosis and reactants. TOPKAT predicted 
fewer derivatives without giving better predictions. From 
these initial data, a very high correlation was obtained for 
derivatives with an MOA of baseline narcosis. Therefore, 
we sought to determine whether we could classify a deriva-
tive as belonging to a specific MOA, and particularly to 
baseline narcosis, before a prediction of its toxicity was 
made. For this study, two different datasets were used: (1) 
EPAFHM, to analyze relationships between the described 
and predicted classifications; and (2) the HPV dataset, to 
analyze relationships between the predicted and real bio-
logical data starting from the supposed classification.

Table 4.  Description of chemicals used to create the model with Equation (5).

Structure N° (CAS number) Structure N° (CAS number)
OOH

H
H H H

H 28 (110-65-6) 
Bio:–3.21

O
HH

H

H

H
H H H

HHH

H
HH

30 (818-72-4) 
Bio:–5.49

O

O

O

H
H

H

H H

H H

H

29 (818-61-1) 
Bio:–4.38

O

O
O

H

H

H

HH
H

H

H

H

H
31 (999-61-1) 

Bio:–4.59

Note. CAS number and real biological data (logLC
50

 in mol/L).
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Classification with Toxtree software
Toxtree (Verhaar scheme) classified the chemicals into five 
groups (Table 6). We were particularly interested in the 

narcosis group. The initial correlation between the real and 
predicted values (generated by the CERMN model) for the 
HPV set of 225 derivatives, without classification, was 0.37 
(r2). Ninety-nine EPAFHM derivatives and 57 HPV deriva-
tives were classified as having a narcosis MOA. From these 
derivatives, the correlation between real and predicted 
values with the CERMN model was 0.87 (r2) for EPAFHM 
and 0.72 for HPV. Therefore, Toxtree is able to extract and 
correctly predict (starting from the CERMN model) deriva-
tives with a potential baseline narcosis for the MOA, but the 
statistical relationship is lower than expected (Table 5).

Classification with Pipeline Pilot machine learning
The learning model was applied to the training set to 
check the quality of the MOA prediction as a function of 
the MOA indicated in the EPAFHM dataset. In this dataset, 
116 derivatives had no defined MOA. With this learning 
model, each compound was classified by function to a 
specific class based on the highest probability obtained. 
Table 7 shows the number of chemicals predicted in each 
MOA for EPAFHM and HPV.

The correlation between the real values and those 
predicted by the CERMN model for the 358 derivatives 
classified as having a narcosis MOA (see Table 7) was 
high (r2 = 0.77 and s = 0.54). If we compare this result to the 
Toxtree result, the CERMN model handled nearly four times 
as many derivatives for a similar correlation. The same stud-
ies were conducted with the test set (HPV). For this dataset, 
60% of the chemicals were classified as having a baseline 
narcosis MOA. The correlation was close to the results 
obtained with Toxtree (r2 = 0.64 and s = 0.75), but this classi-
fication predicted 136 derivatives compared to only 57 with 
Toxtree. For the EPAFHM dataset, we can strongly improve 
the correlation by classifying the compounds according to 
the probability (P) of belonging to a class (e.g. with P = 0.9, 
the correlation was 0.88 for r2 for 127 chemicals instead of 
358), but with HPV we observed that the correlation did not 
substantially improve using the same cutoff.
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Figure 5.  Real vs. predicted logLC
50

 values (baseline narcosis for MOA) 
with the CERMN model.
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Figure 4.  Real vs. predicted logLC50 values (baseline narcosis for MOA) 
with TOPKAT.

Table 7.  Reclassification of MOA for chemicals in the initial set and 
prediction by the learning model.

MOA

EPAFHM

HPV predictionInitial set Prediction

Baseline narcosis 241 358 136

Arylate and ester narcosis 26 29 13

Polar narcosis 38 61 31

Electrophile or 
proelectrophile reactivity

97 39 20

Acetylcholinesterase 
inhibition

17 21 5

Central nervous system 
seizure or stimulant

9 9 1

Neurodepressant 6 7 0

Respiratory blocker or 
inhibitor

4 20 17

Uncoupler of oxidative 
phosphorylation

12 22 2

MOA not determined 116 0 0

Table 6.  Results of classification with Toxtree.

MOA

Dataset

EPAFHM ECB-HPV

Narcosis baseline 99 57

Less inert 77 34

Nonspecific reactivity 89 26

Specific mechanism 4 0

Unclassified 297 108

Total 566 225

Table 5.  Quality of the prediction models for the three principal MOAs.

MOA TOPKAT ECB CERMN

Baseline 
narcosis

r2 = 0.69 
s = 0.72 
n = 215

r2 = 0.91 
s = 0.39 
n = 240

r2 = 0.93 
s = 0.35 
n = 240

Multiple 
narcosis

r2 = 0.31 
s = 0.65 
n  = 51

r2 = 0.74  
s = 0.43 
n = 64

r2 = 0.76 
s = 0.42 
n = 64

Reactants r2 = 0.27 
s = 0.88 
n = 79

r2 = 0.40 
s = 0.82 
n = 94

r2 = 0.41 
s = 0.82 
n = 94



QSAR prediction of acute toxicity in fish    203

Conclusion

The definition of a method able to classify compounds as 
having a narcosis MOA with a high probability is neces-
sary to improve the prediction of toxicity for the majority of 
organic derivatives. Bayesian approaches with fingerprints 
have made important advances toward this definition, but it 
will be necessary to couple such methods with a knowledge 
base that includes definitions of structural alerts (chemical 
features leading to high toxicity). With a correct classifica-
tion of narcosis for the MOA, the ECB and CERMN models 
should give the most relevant statistical results along with 
an explanation of the origin of the toxic effects for these 
derivatives. Analysis of the outliers associated with gen-
eral models (whatever the models) has shown clearly the 
origin of the discrepancies for the predictions. Very highly 
toxic compounds led to important errors for the ECB and 
CERMN predictions. TOPKAT included structural alerts, 
but in this case several derivatives were overestimated for 
their toxicities (the nitrile feature as a structural alert, for 
instance). Therefore, for each structural alert, its charac-
teristic must be clearly defined. Toward this objective, data 
included in the DEREK expert system should be very useful. 
The next steps of this study will be to improve this classifi-
cation as well as to analyze the possibility of improving the 
predictions for derivatives classified as “multiple narcosis” 
and “reactants” for the MOA. Indeed, as described herein, 
it is possible to build a good QSAR equation for reactants 
with the same MOA (Equation (5)). This work is now in 
progress.
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